REPORT

Amicus Trade AB Killeröd 2907 269 92 Båstad

Handläggare, enhet / Handled by, department
Jukka Holappa, Building Technology and
Mechanics

Datum / Date 2003-03-24

 $\begin{array}{c} \text{Beteckning} \, / \, \textit{Reference} \\ BMh \, P301619 \end{array}$

Sida / *Page* 1 (3)

+46 33 16 50 65, jukka.holappa@sp.se

Tensile strength test on eyelets.

Assignment

Tensile strength test.

Test objects

Holdon Mini and Maxi clip-on eyelets see photo 1. Round brass-eyelets and plastic-eyelets see photo 2. The holding efficiency is tested on 650/700 coated vinyl fabrics.

Anticus Trade AB

Laurence & tempor

Particle Trade AB

Laurence & tempor

Particle AB

Laurence AB

Lau

Photo 1

Photo 2

Arrival of test object

25 February, 2003.

Date of testing

The test objects were tested at SP 18-21 March, 2003.

The test objects have been selected by the client without SP's assistance. The test results shown in this report refer only to the tested objects.

Test procedure

Holdon Mini and Maxi clip-on eyelets were tested on coated vinyl fabrics to see the holding efficiency. Through the round brass-eyelets and plastic-eyelets there were mounted suitable axles. The test objects were mounted in the testing machine called Adamel see photo 3. The test objects were then pulled to fracture with a constant speed of 20 mm/min.

SP Sveriges Provnings- och Forskningsinstitut, Box 857, 501 15 BORÅS, Tfn 033-16 50 00, Fax 033-13 55 02, E-post info@sp.se, Org.nr 556464-6874 SP Swedish National Testing and Research Institute, Box 857, SE-501 15 BORÅS, SWEDEN, Telephone + 46 33 16 50 00, Telefax + 46 33 13 55 02, E-mail info@sp.se, Reg.No 556464-6874

Detta dokument får endast återges i sin helhet, om inte SP i förväg skriftligen godkänt annat.

Datum/Date

2003-03-24

Photo 3. Adamel testing machine with Holdon Maxi.

Test results

The maximum breaking forces are shown in table.

Marking	Maximum	Remarks
	breaking force	
	(N)	
Holdon	734	Holdon Mini clip-on eyelet slip from the fabric
Mini clip-on	756	Holdon Mini clip-on eyelet slip from the fabric
eyelet	763	Holdon Mini clip-on eyelet slip from the fabric
	775	Holdon Mini clip-on eyelet slip from the fabric
	755	Holdon Mini clip-on eyelet slip from the fabric
Holdon	1016	Fracture on the Maxi clip-on eyelet
Maxi clip-on	972	Fracture on the Maxi clip-on eyelet
eyelet	992	Fracture on the Maxi clip-on eyelet
	1004	Fracture on the Maxi clip-on eyelet
	1038	Fracture on the Maxi clip-on eyelet
Round	461	Fracture at the vinyl coated fabric in the eyelet
brass-	520	Fracture at the vinyl coated fabric in the eyelet
eyelet	496	Fracture at the vinyl coated fabric in the eyelet
	494	Fracture at the vinyl coated fabric in the eyelet
	510	Fracture at the vinyl coated fabric in the eyelet
Round	402	Fracture at the vinyl coated fabric in the eyelet
plastic-	444	Fracture at the vinyl coated fabric in the eyelet
eyelet	415	Fracture at the vinyl coated fabric in the eyelet
	429	Fracture at the vinyl coated fabric in the eyelet
	393	Fracture at the vinyl coated fabric in the eyelet

Measurement uncertainty

The measurement uncertainty for the maximum force is <1%.

The reported expanded uncertainty of measurement is stated as the combined standard uncertainty of measurement multiplied by the coverage factor k = 2, which corresponds to a coverage probability of approximately 95%.

SP Swedish National Testing and Research Institute Building Technology and Mechanics – Solid Mechanics and Structures

Erica Waller Technical manager Jukka Holappa Technical officer